Polyamine-Promoted Growth of One-Dimensional Nanostructure-Based Silica and Its Feature in Catalyst Design

نویسندگان

  • Xin-Ling Liu
  • Pei-Xin Zhu
  • Yan-Feng Gao
  • Ren-Hua Jin
چکیده

Crystalline linear polyethyleneimine (LPEI) is a fascinating polymer that can be used as a catalyst, template and scaffold in order to direct the formation of silica with controllable compositions and spatial structures under mild conditions. Considering the crystallization and assembly of LPEI is temperature-dependent, we adopted different accelerated cooling processes of a hot aqueous solution of LPEI in order to modulate the LPEI crystalline aggregates. We then used them in the hydrolytic condensation of alkoxysilane. A series of silica with nanofibrils, nanotubes and nanowire-based structures were achieved simply by the LPEI aggregates which were pre-formed in defined cooling processes. These specific one-dimensional nanoscale structures assembled into microscale fibers-, sheetand platelet-like coalescences. Furthermore, the deposition kinetics was also researched by the combination of other characterizations (e.g., pH measurement, Si MAS NMR). As a preliminary application, the hybrids of LPEI@SiO2 were used not only as an agent for reducing PtCl4 into Pt but also as host for loading Pt nanoparticles. The Pt-loaded silica showed good catalytic properties in the reduction of Rhodamine B by dimethylaminoborane (DMAB). OPEN ACCESS Materials 2012, 5 1788

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approaches to nanostructure control and functionalizations of polymer@silica hybrid nanograss generated by biomimetic silica mineralization on a self-assembled polyamine layer

We report the rational control of the nanostructure and surface morphology of a polyamine@silica nanoribbon-based hybrid nanograss film, which was generated by performing a biomimetic silica mineralization reaction on a nanostructured linear polyethyleneimine (LPEI) layer preorganized on the inner wall of a glass tube. We found that the film thickness, size and density of the nanoribbons and th...

متن کامل

Biginelli Multicomponent Condensation Reaction Promoted by 4,4ʹ-Bipyridinium Dichloride Ordered Mesoporous Silica Nanocomposite under Solvent Free Conditions

In this paper, 4,4ʹ-bipyridinium dichloride  supported SBA-15 (SBA@BiPy2+ 2Cl-) was used for the synthesis of dihydropyrimidinones. The synthesized catalyst was characterized by FT-IR spectroscopy, scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and Thermogravimetric analysis (TGA). This nanocomposite was shown to be an efficient heterogeneous ca...

متن کامل

KCl Promoted Cobalt-iron Nanocatalysts Supported on Silica: Catalytic Performance and Characterization in Fischer-Tropsch Synthesis

The SiO2 supported cobalt-iron nano catalysts were prepared by the sol-gel method. This research investigated the effects of (Co/Fe) wt.%, different Co/Fe ratio at different temperature and loading of KCl wt.% for Fisher-Tropsch synthesis (FTS). The results were showed that the catalyst containing 50 wt.% (Co/Fe)/SiO2 (Co/Fe ratio is 70/30) which promoted with 0.6 wt.% KCl is an optimal nano ca...

متن کامل

Nano-silica supported ethane-sulfonic acid: An efficient heterogeneous solid acid catalyst for one-pot synthesis of xanthene and acridine derivatives

In this study, silica nanoparticles were used as support to prepare a new heterogeneous catalyst system for application in organic reactions. The reaction of silica nanoparticles with sodium 2-bromoethane-1-sulfonate resulted in the connection of a sulfonic acid group on the surface of silica nanoparticles (NSESA). The synthetic catalyst system was characterized using different microscopic and ...

متن کامل

Nano-silica supported ethane-sulfonic acid: An efficient heterogeneous solid acid catalyst for one-pot synthesis of xanthene and acridine derivatives

In this study, silica nanoparticles were used as support to prepare a new heterogeneous catalyst system for application in organic reactions. The reaction of silica nanoparticles with sodium 2-bromoethane-1-sulfonate resulted in the connection of a sulfonic acid group on the surface of silica nanoparticles (NSESA). The synthetic catalyst system was characterized using different microscopic and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2012